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The solution of the problem of the spatial hypersonic flow of a viscous gas past spherically blunted bodies is 

considered using the system of equations of a complete viscous shock layer (CVSL). The use of the 

small-parameter method (SPM) in conjunction with the method of global iterations enables one to reduce 

the computer time required by a factor of approximately 100 compared with the time needed to calculate 

similar problems in a strictly spatial formulation by establishment methods [ 11. The flow past blunt cones 

and bicones of long length at low angles of attack is considered as well as the flow past a body, which differs 

slightly from an axisymmetric one, at zero angle of attack. The applicability of the SPM is confirmed by 

comparison with experimental and computed data. 

THE DIRECT numerical simulation of hypersonic spatial flow of a viscous gas past blunt bodies using 
the complete unsteady NavierStokes equations requires considerable computational resources. In 
the case of long blunt bodies, this approach becomes unacceptable even when supercomputers are 
available. Moreover, it has been noted in [2] that the use of numerical methods to solve spatial 
problems in gas aerodynamics may lead to a loss in accuracy in the case of angles of attack and that 
the relative error may increase as the angle of attack becomes smaller. 

The correct use of the SPM is effective in this connection. It has been used in the case of the flow 
of an inviscid gas past cones at low angles of attack [2, 31 and in the case of the flow past bodies 
which are slightly different from solids of revolution [4]. The range of applicability of the SPM to 
which proper attention has not previously been paid [4], has been indicated in [2]. 

1. FORMULATION OF THE PROBLEM 

The spatial, hypersonic, steady flow of a viscous gas around a blunt body is considered. The gas 
flow in the shock layer is described using a system of CVSL equations [5] which contains all the 
terms of a complete system of Navier-Stokes equations up to O(Re-“‘). This system of equation, 
which is treated in an orthogonal system of coordinates and is normally attached to the surface of 
the body (X is the length of the generatrix of the contour of the body, y is the distance along the 
normal to the body surface and cp is the meridional angle measured from the flow plane) has the 
form [6] 
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Here U, w and v are the physical components of the velocity vector along the X. ip and v directions, 
respectively, R(x, 9) is the radius of curvature of the body surface Re, is the Reynolds number, 
K(X, ‘p) = l/R(x, cp) is the curvature of the body surface, v is the Prandtl number, N is the angle of 
inclination of the generatrix of the body to the axis of symmetry of the body, and H, is the total 
enthalpy of the free stream. 

Quantities are reduced to a dimensionless form in the following manner: the components of the 
velocity vector are referred to the velocity of the free stream V,, the pressure P is referred to 

PJC, the tota enthalpy N is referred to H, 1 and quantities having the dimensions of length are 
referred to the radius of the bluntness R(0). 

In the case of an ideal gas, the coefficient of viscosity p is assumed to be a known function of the 
absolute temperature T. Either Sutherland’s law or a power law was used in the calculations. 

The system of (1.1) is closed by the following boundary conditions. Generatized Rankinc- 
Hugoniot conditions are imposed on the shock wave which, on passing to the limit, is replaced by a 
surface of pronounced discontinuity. In the system of coordinates (x, q. y) these conditions have the 
form [6] 
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The subscript s denotes the value of a quantity behind the surface of the shock wave, V,(i) (i = 1,2, 
3) are the components of the velocity vector of the free stream in the system of coordinates (x, cp, y ), 
@, and -ys are the angles of inclination between the surface of the shock wave and the surface of the 
body, and y, = ys (x, 9) is the shock wave stand-off distance. 

The conditions of no-slip, impermeability and of a cooled wall 

u(x, cp. 0) = w(x, cp, 0) = u(x, cp, 0) = 0, H(x, cp, 0) = H$ (1.3) 

are specified as boundary conditions on the body surface. 
The subscript w denotes a quantity on the body surface. 
The problem is solved in the domain between the surfaces of the body and the detached shock 

wave: O~xGx~, Odcp<27T, OGyGy,. “Soft” boundary conditions are imposed at the surface 
X =+. 

2. THE SMALL-PARAMETER METHOD 

As has already been mentioned above, the use of numerical methods to simulate spatial flows 
around blunt bodies can lead to a loss of accuracy in the case of low angles of attack [2]. Actually, let 
a certain blunt axisymmetric body be placed in a stream of a viscous gas at a small angle of attack E. 
In the system of coordinates (x, cp, y ) the coefficient of the lift force, without taking account of the 
forces due to viscous friction, will be as follows: 

2% Xf 
CY - $ f Pw cos a cos (9r, dxdq (2.1) 

0 0 

where LY is the angle of inclination of the generatrix to the axis of the body. On linearizing the 
pressure with respect to a small parameter and expanding the correction to the pressure in a Fourier 
series, we obtain 

CY - eTP$) cos “r, dxdcp (2.2) 

It follows from the latter relationship that the relative error in C, is not proportional to the 
relative error in the pressure P, but to the relative error in the coefficient of the Fourier series PC) 

AP(l)/P(‘) - c-l AP,fP (2.3) 

Relationship (2.3) explains the well-known fact that, if spatial numerical methods are employed 
when solving problems of the aerodynamics of solids of revolution at small angles of attack, the 
relative accuracy in determining the lift is far less than the relative accuracy in determining the drag 
and, moreover, this situation becomes more aggravated as the angle of attack decreases. 

The use of the SPM enables one to overcome the above-mentioned difficulties. Furthermore, this 
method also possesses a number of advantages. The use of the SPM can yield effective results for 
the following classes of problems: (1) finding the flow around an axisymmetric body at a small angle 
of attack [l-3, 61, (2) determining the flow around a body which differs only slightly from a solid 
revolution [4]. The approach in which perturbations are expanded in formal Fourier series, that is 
traditional both for the first as well as the second class of problems, enables one to reduce both 
problems to essentially a single problem. This paper is concerned with solving these classes of 
problems. 
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For convenience in obtaining the numerical solution, we will change to the new independent 
variables 5 = X, IZ = y/ys and v = cp, where y, = ys(x, cp) is the shock wave stand-off distance, We 
note that the domains of definition of the spatial and axisymmetric solutions are different. Such ;a 
change of variables leads to a situation where these domains are formally identical. 

The essence of the SPM lies in the fact that the spatial solution is represented in the form of a sum 
of the axisymmetric solution and a certain small perturbation which has a linear form. Here. all the 
basic non-linear effects in the spatial solution are referred to its axisymmetric component and the 
asymmetry in the spatial solution is taken into account in terms of small perturbations which have a 
linear character. The required solution can therefore be represented in the form 

F([, v, n) = Fog, n) t EljF([, v, n) t O(f) 

w((, v, TZ) = dW([, v, n) + O(E) 

f-,(t, v> = row(O+ f~r,(t, d+ O(E) 

(2.4) 

The corresponding quantities in the axisymmetric solution are denoted by a zero subscript, E is the 
small parameter which characterizes the extent of the non-axisymmetric nature of the flow which 
may be either the angle of attack or a parameter which indicates the extent to which the body differs 
from a solid of revolution, w is the meridional component of the velocity vector. Fare the remaining 
unknown functions and r = r,,, is the equation of the surface of the body. 

Let us now expand the perturbations in Fourier series in the meridional coordinate 11. ‘The 
coefficients of the Fourier harmonics in the expansions of the perturbations in formal series in the 
angular variable v will be the required functions. Hence 

FF([, v, n) = F(O)& n) + 2 Ftk)(t, n) cos kv 
k= 1 

6w(<, V, n) = 2 NJ(~)@, n) sin ku 
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Here, account has immediately been taken of the fact that the functions F = (P, p, H, u, U, W, _yY , 
r,) are even with respect to v but the function w is odd with respect to v by virtue of the symmetry of 
the problem about the v = 0 plane. 

Higher terms in E are not considered in expansion (2.4) since the aerodynamic forces and 
moments solely depend on the coefficients F. and F (l) in expansions (2.4) and (2.5), and, by virtue 
of this, it is unreasonable to consider the quadratic terms of expansion (2.4), especially as taking 
account of them yields a correction of l-3% compared with the linear case [l]. 

It should be noted that the use of series (2.5) is only effective in those cases when the first terms of 
series (2.5) for fixed 5 and n decay rapidly as the number of the harmonic k increases, which also 
ensures their applicability for practical purposes. In the case of the flow past an axisymmetric body 
at a small angle attack, where the small parameter E is the angle of attack, series (2.5) only contains 
a single term corresponding to k = 1 [l, 31. In the case of the flow past a body which is slightly 
different from an axisymmetric body at zero angle of attack, all the terms of series (2.5) are 
non-zero. For the effective use of series (2.5) in the latter case, it is necessary that the surface of the 
body r, (5, 0) should belong to the class of periodicity ccrn), and, moreover, the greater the value of 

m, the more rapidly the terms of the Fourier series (2.5) decay as the number of the harmonic k 
increases and, in fact, their rate of decay is equal to o(k-“). Belonging to the periodicity class c(ln) 
means that [18]: (1) the function f( ) Y is continuous in the interval [-T, n] together with its 
derivatives up to the mth derivatives, inclusive, and (2) f( -7r + 0) = f( r - 0). 

On substituting an expansion of the form of (2.4) and (2.5) into the system of CVSL equations 
(1.1) and into the boundary conditions (1.2) and (1.3), on picking out the terms O(I) and O(E) we 
obtain that the spatial system is equations is subdivided into a set of two-dimensional systems of 
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equations: an axisymmetric system and a number of independent linear systems with two 
independent variables for determining the coefficients accompanying the first harmonics of the 
gas-dynamic quantities. 

Actually, let us represent the system of CVSL equations (1.1) in the form 

Let us apply the SPM to (2.6) and, in fact, represent the matrices A, B, C and D and the vectors U 
and F in the form (2.4) and (2.5). We substitute these expressions into (2.6). After picking out the 
terms O(Z) and O(E), we obtain that the spatial system of equations reduces to the set of 
two-dimensional systems of equations 
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where Uck) are the coefficients of the Fourier harmonics, Ao, B. and Do are matrices which 
correspond to an axisymmetric system of equations, and the axisymmetric solution is denoted by the 
zero subscript. We also carry out a similar procedure in the case of the boundary conditions. 

We shall consider the coefficients of the Fourier harmonics for linear perturbations as the 
required functions. 

The proper application of SPM in the case of a problem involving spatial flow past blunt bodies 
assumes [2] : (1) continuous differentiability of the gas-dynamic quantities with respect to the small 
parameter E in the neighbourhood of E = 0, (2) the equivalence of the axisymmetric and spatial 
solutions in the sense that they must possess one and the same system of singularities (shock waves, 
contact discontinuities, etc.), (3) the applicability of expansion (2.4) in the case of axisymmetric 
bodies at angles of attack imposes the following constraint on the small parameter E 

E I z/rw + %,/a2 I < 1 

where z is the axial coordinate (as was pointed out by Livinskii) and, in the case of a body which 
differs slightly from an axisymmetric one: E+ 1. 

Spatial calculations of the flow past a body with a specified geometry and specified free stream 
parameters using the approach described above immediately enables one to find the entire single 
parameter family of solutions with the parameter E which is either the angle of attack or a parameter 
characterizing the extent to which the body differs from a solid of revolution. 

3. THE METHOD OF GLOBAL ITERATIONS 

After using the SPM, the spatial system of CVSL equations (1.1) was reduced to a set of 
two-dimensional systems: to the axisymmetric system (2.7) and to a series of independent systems of 
equations for determining the coefficients accompanying the first harmonics of the gas-dynamic 
quantities (2.8). 

It was shown in [9] that the axisymmetric system of CVSL equations (2.7) shows elliptic 
properties in subsonic flow domains, in particular, close to the surface of the body and, as a 
consequence of this, it is impossible to use any marching method with respect to the variable ,$ to 
solve this problem directly. A previously described approach [lo] was employed when solving the 
axisymmetrical system of equations. 

The set of systems of equations for determining the coefficients of the Fourier harmonics (2.8) is 
identical as regards its basic properties with the system of CVSL equations in the axisymmetric case 
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(2.7) and, by virtue of this, the matrices A,). RCI and Do in the systems of equations (2.7) and (3.8)~ 
which determine the type of the systems of equations, are completely identical. 

On account of this, an approach was used to solve the systems of equations for the cocfficienta ,)I 
the Fourier harmonics which is based on the execution of global iteration. In order to do this. bi<: 
represent the derivative r?PCk’la[ in the momentum equation in the pro;ection on the tangent to the 
body in the form 

The current mth global iteration is calculated for a specified field Pr’ and a specified coefficient ot 
the Fourier harmonic of the angle of inclination of the shock wave gTk’ which are obtained in the 
calculation of the preceding global iteration. The Fourier coefficients of the pressure field and of the 
inclination of the shock wave to the surface of the body for the next (m + l)th global iteration arc 
determined from the relaxation relationships 

(p(k))(m + 1) = 

(p&))(m+O 

TP (@q(m) + (1 -- Tp) (Ppp) !.3.2) 

s = ?&?y)* + (I -- Ts) (~(k))(~~ ) J s 

Here (@,(k’)T and (E’(kf)(‘rtt are the Fourier coefficients of the angle of inclinati~~n of the shock 
wave and ‘the pressure respectively, obtained as a result of the calculati~~n of the mth global 
iteration, and rP and 7S are relaxation parameters. 

A new method is proposed for calculating the inclination of the shock wave on a bluntness which 
is unlike that previously adopted in [lo]. In fact, the Fourier image of the angle of inclination of the 
shock wave on the current global iteration was found not from the mass balance [lo] but from the 
Rankine-Hugoniot boundary condition for the Fourier image of the normal component of the 
velocity vector u, . (k) In the case of corrections to the axisymmetric solution which are linear with 
respect to the angle of attack, the integral law of conservation of mass is identically satisfied and 
does not yield any additional information whatsoever. We note that such an approach to the 
calculation of the inclination of the shock wave is fundamental in the spatial case since when solving 
the spatial problems it is not clear how the mass balance relationship can be used to find the position 
of the shock wave, while the approach which has been described above enables one to overcome this 
dif~cutty. 

The derivatives in (3.1) have to be approximated by difference expressions in such a manner that 
the propagation of perturbations upstream in subsonic flow domains is taken account of in carrying 
out the iterations. For this purpose, the approximation was employed which uses backward 
differences in the first term and forward differences in the second term in expression (3.1). 

A numerical method was employed when solving the mixed problem for the coefficients of the 
Fourier harmonics. It is based on the use of a difference which is of the first order of approximation 
with respect to the coordinate which is longitudinal to the body and of fourth order with respect to 
the transverse coordinate. 

A grid which is adaptive with respect to II was employed for calculating flows with large flux 
gradients (at high Reynolds numbers). The step size was chosen at each point depending on the first 
and second derivatives of the longitudinal component of the velocity vector TV with respect to the 
coordinate n 1111. This enabled calculations to be carried out over a wide range of Reynolds 
numbers (10’ s Re, S IO’), which encompasses flow conditions ranging from a completely viscous 
shock layer to an inviscid shock layer with a thin boundary layer at the body. 

J. RESULTS OF CAI,CULATIONS 

The following calculations were carried out using the algorithm described above: (1) the flow past spherically 
blunted cones at small angles of attack of S-10”. (2) numerical simulation of the flow past a tong spherically 
blunted bicone at a small angle of attack, (3) the flow past an elliptic cone at a zero angie of attack. 

Only the term corresponding to k = I [I, 31 ‘. 15 non-zero in expansion (2.5) in the case of a blunt cone at 
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1 X 

FIG. 1. 

moderate angles of attack. By virtue of this, two two-dimensional problems were soIved to find the spatial flow, 
A camparison of the calculations with experimental data [12] for the windward side (p = 0, curves 1) and 
leeward side (rp = T, curves 2) of the cone is presented in Figs 1-3. The computational grid consisted of 35 X 31 
grid points where the first number corresponds to the n coordinate. Data on the shock wave stand-off distance 
for the foI~ow~ng input parameters: Re, = 3.95 x 104, H, = 0.701 is the tempera~re factor, &f, = 5.9 is the 
Mach number, T, = 53.7 K and S, = 25” is the cone half-angle and E = 10” is the angle of attack, are presented 
in Fig. 1. Data on the pressure distribution when Re, = 3.95 x 1O4, N, = 5.8, T, = 300 K, To = 428 K is the 
stagnation temperature, E = 8” and S, = 40” are shown in Fig. 2. Data concerning the normalized heat transfer 
coefficient: C, = 2pa-’ Re,” ahlay / w when Re, = 1.3 x ld, H, = 0.316, M, = 10.33, T, = 46.82 K, 0, = 45” 
and B = 5” are presented in Fig. 3. 

Curves of the drag C, (the dashed line), of the lift C, (the dotted and dashed line) and the pitching moment 
MZ (a dash and two dots) on the angle of attack e, obtained using the present method for spherically blunted 
cone. when Re, = 4.1 x 103, M, = 13, H, = 0.27, u = 0.72, p = 0.75 is the power index in the viscosity law, 
0, = Y, L = 6.98 is the length of the cone referred to the radius of biuntedness, are presented in Fig. 4. The 
solid lines correspond to the calculation in [13] while the points are experimental data [14, IS]. As was 
mentioned above, the proper application of the small-parameter method in this case imposes the following 
constraint on the magni~de of the angle of atiack: E G 5”. However, as can be seen from the comparison, there 
is good agreement with the experimental results up to angles of attack of about 10”. This is indicative of the fact 
that the SPM is vaiid in the case of integral characteristics over a wider range than would be expected from 
theoretical estimates. 

1 
FIG. 2. 

2 
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The following block marching technique for implementing the method was employed in order to simulate the 

flow around a long (more than 50 times the bluntness radius), spherical blunted bicone at an angle of attack of 
2”. The whole of the computational domain was subdivided into mutually intersecting blocks and the 
calculations of each block were carried out using the method of global iterations. Mutual intersection of the 
blocks was introduced in order to take account of the transmission of perturbations upstream in subsonic flow 
domains. The dimensions of the subsonic domains may vary considerably on different segments of the body. 
The use of a block marching method enables one to shorten the overall computation time significantly since, for 
each block, there is a specific number of iterations which is necessary for convergence. The discontinuity in the 
angle of the generatrix of the bicone was smoothed in the neighbourhood of the point where the cones joined. 
This smoothing was insignificant and was propagated onto 4-5 grid points of the computational grid along the 
direction of 5. In this calculation, the grid was not only adapted in the normal direction but also in directions 
longitudinal to the body, which enabled us to carry out more accurate calculations in the neighbourhood of the 
points where the cones joined. The computation grid consisted of 35 X 119 grid points. 

A comparison with the results of an experiment [16] on the pressure distribution on the body both for the 
windward side (curve 2) and leeward side (curve 1) of the bicone is shown in Fig. 5. The calculations were 
carried out for Re, = 3.5 x 104, M, = 10.1, T, = 49.3 K, H, = 0.705, zC = 14.81 is the point where the cones 
join, 0,, = 9.33”, 0,, = 5” and l = 2”. The systematic difference of about 2-3% in the magnitude of the pressure 
on the end of the bicone is explained by the fact that quadratic terms in E in expansion (2.4), which are not 
taken into account in this approach, start to have an effect on the solution. 

I 
i 

------1 

I 

8 16 0. degrees 
FIG;. 4. 
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FIG. 5. 

Xn the case of the flow past a spherically blunted elliptic cone the quantity E = 1 - sin @r/sin 0, (& < 00) was 
chosen as the small parameter. The surface of the elliptic cone was specified in the following manner 

sin’ Ip cos’ Ip 
-44 

h&,~~“(---- +- ) 
‘QX) ‘&W 

I 
sinx, 

~~(x) = 
O~x~x,,x,=n-e, 

cos8,+L6ne,(x-x,), x>x, 

SillX, 

r&4x) = 
t 

O<XQX, 

cos 8, + sin B, (2 - x,), x > x, 

(4.1) 

(4.2) 

(4.3) 

In order to ensure that there was a smooth transition from the spherical bluntness onto the surface of the 
elliptic cone, the discontinuity in the angle of the generatrix in (4.3) was smoothed. On linearizing (4.1) with 
respect to the small parameter e and then expanding the resulting perturbations in Fourier series, we obtain 
that just two terms in the Fourier series (2.9, corresponding to k = 0,2 will have non-zero values. The surface 
of the elliptic cone is thereby replaced by a surface which has the following form 

rW (x. +! = row@) + f (x - x0 ) sin e0 (4 - Yi co5 24 + Cl@ ) 

In this case, the spatial problem of finding the flow around an elliptic cone is reduced to solving an 

FIG. 6. 
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-1 

FK,. 7. 

~~xisymmetric problem (the problem of finding the flow around a circular cone) and two Tao-dimensi~~nal 
problems of determining the Fourier harmonics of gas-dynamic quantities. The calculations of the gas How 
were carried out for Re, = lo”, H, = 0.1, 7’,= = 200 K, M, = 15 and H,, = 30”. The thermal flux --yw == 
/Barr-’ Re;‘dHldy lw and the coefficient of friction Cyfz = 2pRe,’ iiwldy iu. are presented in Figs 6 and 7 in three 
cross-sections with respect to x: X, = 1.388, x2 = 1.976 and x3 = 2.6571. All results for the elliptic cone are 
presented for the case when e = 0.3. 

It can be seen from the above comparisons that the proper use of the approach which has been described 
above enables one to obtain results of high accuracy and over a wide range of free-stream parameters and also 
makes it possible to find a one-parameter family of solutions where the parameter is either the angle of attack 
or a parameter corresponding to the degree of difference between the body under consideration and a solid of 
revolution. All of this shows the effectiveness of the method proposed. 

In concluding, it should be pointed out that the computer time required for the most widely different values 
of Re, from Id to lo7 varied only slightly and was 20-30 minutes using an IBM PC AT 386. 
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