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The solution of the problem of the spatial hypersonic flow of a viscous gas past spherically blunted bodies is
considered using the system of equations of a complete viscous shock layer (CVSL). The use of the
small-parameter method (SPM) in conjunction with the method of global iterations enables one to reduce
the computer time required by a factor of approximately 100 compared with the time needed to calculate
similar problems in a strictly spatial formulation by establishment methods [1]. The flow past blunt cones
and bicones of long length at low angles of attack is considered as well as the flow past a body, which differs
slightly from an axisymmetric one, at zero angle of attack. The applicability of the SPM is confirmed by
comparison with experimental and computed data.

THE DIRECT numerical simulation of hypersonic spatial flow of a viscous gas past blunt bodies using
the complete unsteady Navier—Stokes equations requires considerable computational resources. In
the case of long blunt bodies, this approach becomes unacceptable even when supercomputers are
available. Moreover, it has been noted in [2] that the use of numerical methods to solve spatial
problems in gas aerodynamics may lead to a loss in accuracy in the case of angles of attack and that
the relative error may increase as the angle of attack becomes smaller.

The correct use of the SPM is effective in this connection. It has been used in the case of the flow
of an inviscid gas past cones at low angles of attack [2, 3] and in the case of the flow past bodies
which are slightly different from solids of revolution [4]. The range of applicability of the SPM to
which proper attention has not previously been paid [4], has been indicated in [2].

1. FORMULATION OF THE PROBLEM

The spatial, hypersonic, steady flow of a viscous gas around a blunt body is considered. The gas
flow in the shock layer is described using a system of CVSL equations [5] which contains all the
terms of a complete system of Navier—Stokes equations up to O (Re™"?). This system of equation,
which is treated in an orthogonal system of coordinates and is normally attached to the surface of
the body (x is the length of the generatrix of the contour of the body, y is the distance along the
normal to the body surface and ¢ is the meridional angle measured from the flow plane) has the
form [6]
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Here u, w and v are the physical components of the velocity vector along the x, ¢ and y directions,
respectively, R(x, ¢) is the radius of curvature of the body surface Re.. is the Reynolds number,
k{x, ¢) = 1/R(x, p) is the curvature of the body surface, ¢ is the Prandtl number, « is the angle of
inclination of the generatrix of the body to the axis of symmetry of the body, and H.. is the total
enthalpy of the free stream.

Quantities are reduced to a dimensionless form in the following manner: the components of the
velocity vector are referred to the velocity of the free stream V.., the pressure P is referred to
p- V2, the total enthalpy H is referred to H.., and quantities having the dimensions of length are
referred to the radius of the bluntness R(0).

In the case of an ideal gas, the coefficient of viscosity u is assumed to be a known function of the
absolute temperature T. Either Sutherland’s law or a power law was used in the calculations.

The system of {1.1) is closed by the following boundary conditions. Generalized Rankine-
Hugoniot conditions are imposed on the shock wave which, on passing to the limit. is replaced by a
surface of pronounced discontinuity. In the system of coordinates (x, ¢, y) these conditions have the
form [6]
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The subscript s denotes the value of a quantity behind the surface of the shock wave, V(i) (i=1, 2,
3) are the components of the velocity vector of the free stream in the system of coordinates (x, ¢, y),
B, and v are the angles of inclination between the surface of the shock wave and the surface of the
body, and y, = y,(x, ¢) is the shock wave stand-off distance.

The conditions of no-slip, impermeability and of a cooled wall

u(x,ap,0)=w(x, ‘Py 0)=U(X,t,0, 0)=O: H(x» §0, 0)=H?V (13)

are specified as boundary conditions on the body surface.

The subscript w denotes a quantity on the body surface.

The problem is solved in the domain between the surfaces of the body and the detached shock
wave: 0sx<x;, 0<¢<2w, 0<y=<y,. “Soft” boundary conditions are imposed at the surface
X = Xr.

2. THE SMALL-PARAMETER METHOD

As has already been mentioned above, the use of numerical methods to simulate spatial flows
around blunt bodies can lead to a loss of accuracy in the case of low angles of attack [2]. Actually, let
a certain blunt axisymmetric body be placed in a stream of a viscous gas at a small angle of attack e.
In the system of coordinates (x, ¢, y) the coefficient of the lift force, without taking account of the
forces due to viscous friction, will be as follows:

2% x¢
Cy, ~ (j; (j; P,, cos & cos @r,, dxdy 2.1

where « is the angle of inclination of the generatrix to the axis of the body. On linearizing the
pressure with respect to a small parameter and expanding the correction to the pressure in a Fourier
series, we obtain

xf
Cy ~ e P cosar, dxdy (2.2)
0

It follows from the latter relationship that the relative error in C, is not proportional to the
relative error in the pressure P, but to the relative error in the coefficient of the Fourier series P

APWP() ~ e tap/p (2.3)

Relationship (2.3) explains the well-known fact that, if spatial numerical methods are employed
when solving problems of the aerodynamics of solids of revolution at small angles of attack, the
relative accuracy in determining the lift is far less than the relative accuracy in determining the drag
and, moreover, this situation becomes more aggravated as the angle of attack decreases.

The use of the SPM enables one to overcome the above-mentioned difficulties. Furthermore, this
method also possesses a number of advantages. The use of the SPM can yield effective results for
the following classes of problems: (1) finding the flow around an axisymmetric body at a small angle
of attack [1-3, 6], (2) determining the flow around a body which differs only slightly from a solid
revolution [4]. The approach in which perturbations are expanded in formal Fourier series, that is
traditional both for the first as well as the second class of problems, enables one to reduce both
problems to essentially a single problem. This paper is concerned with solving these classes of
problems.
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For convenience in obtaining the numerical solution, we will change to the new independent
variables ¢ = x, n = y/y, and v = ¢, where y, = y,(x, ¢) is the shock wave stand-off distance. We
note that the domains of definition of the spatial and axisymmetric solutions are different. Such a
change of variables leads to a situation where these domains are formally identical.

The essence of the SPM lies in the fact that the spatial solution is represented in the form of a sum
of the axisymmetric solution and a certain small perturbation which has a linear form. Here, all the
basic non-linear effects in the spatial solution are referred to its axisymmetric component and the
asymmetry in the spatial solution is taken into account in terms of small perturbations which have a
linear character. The required solution can therefore be represented in the form

F(&,v,n)=Fo(&, )+ edF(&, v, n)+0(e)
wi(g, v, n)=edw(&, v, n)+ o(e) (2.4)
rw(&, v) = row(&) + €dry (£, v) + o(e)

The corresponding quantities in the axisymmetric solution are denoted by a zero subscript, € is the
small parameter which characterizes the extent of the non-axisymmetric nature of the flow which
may be either the angle of attack or a parameter which indicates the extent to which the body differs
from a solid of revolution, w is the meridional component of the velocity vector, F are the remaining
unknown functions and r = r,, is the equation of the surface of the body.

Let us now expand the perturbations in Fourier series in the meridional coordinate v». The
coefficients of the Fourier harmonics in the expansions of the perturbations in formal series in the
angular variable v will be the required functions. Hence

SFE v, m)=FO®E n) + 3 FOE, n)cos kv
k=1
sw(g, v.my= > wiE, n)sinkp (2.5)
k=1

Sre (8. v) = rlO) + b3 r)(E) cos kv
k=1

Here, account has immediately been taken of the fact that the functions F = (P, p, H, u, v, w, y;,
r«) are even with respect to v but the function w is odd with respect to v by virtue of the symmetry of
the problem about the v = 0 plane.

Higher terms in e are not considered in expansion (2.4) since the aerodynamic forces and
moments solely depend on the coefficients Fy and F") in expansions (2.4) and (2.5), and, by virtue
of this, it is unreasonable to consider the quadratic terms of expansion (2.4), especially as taking
account of them yields a correction of 1-3% compared with the linear case [1].

It should be noted that the use of series (2.5) is only effective in those cases when the first terms of
series (2.5) for fixed ¢ and n decay rapidly as the number of the harmonic k increases, which also
ensures their applicability for practical purposes. In the case of the flow past an axisymmetric body
at a small angle attack, where the small parameter e is the angle of attack, series (2.5) only contains
a single term corresponding to k = 1 [1, 3]. In the case of the flow past a body which is slightly
different from an axisymmetric body at zero angle of attack, all the terms of series (2.5) are
non-zero. For the effective use of series (2.5) in the latter case, it is necessary that the surface of the
body r. (£, 6) should belong to the class of periodicity C*””, and, moreover, the greater the value of
m, the more rapidly the terms of the Fourier series (2.5) decay as the number of the harmonic k
increases and, in fact, their rate of decay is equal to o (k™). Belonging to the periodicity class C (m)
means that [18]: (1) the function f(») is continuous in the interval [—, 7] together with its
derivatives up to the mth derivatives, inclusive, and (2) f(—7+0) = f(m—0).

On substituting an expansion of the form of (2.4) and (2.5) into the system of CVSL equations
(1.1) and into the boundary conditions (1.2) and (1.3), on picking out the terms O(I) and O(e) we
obtain that the spatial system is equations is subdivided into a set of two-dimensional systems of
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equations: an axisymmetric system and a number of independent linear systems with two
independent variables for determining the coefficients accompanying the first harmonics of the
gas-dynamic quantities.

Actually, let us represent the system of CVSL equations (1.1) in the form

aU oU au oU
A—+B——+CTOV—+F=DF, U={p,u,w, v, H]" (2.6)
n

Let us apply the SPM to (2.6) and, in fact, represent the matrices A, B, C and D and the vectors U
and F in the form (2.4) and (2.5). We substitute these expressions into (2.6). After picking out the
terms O(I) and O(e), we obtain that the spatial system of equations reduces to the set of
two-dimensional systems of equations

3y, 3y, 22U,
A + B + Fo=D 2.7
° o ° 0= Do~ 2.7
au® au® a2y
A +B +F&) = p)———— k=0,1,2... 2.8
0 as 0 an 0 0 an2 ( )

U = (o) () 4, (k) (k) )T

where U®) are the coefficients of the Fourier harmonics, Ay, By and D, are matrices which
correspond to an axisymmetric system of equations, and the axisymmetric solution is denoted by the
zero subscript. We also carry out a similar procedure in the case of the boundary conditions.

We shall consider the coefficients of the Fourier harmonics for linear perturbations as the
required functions.

The proper application of SPM in the case of a problem involving spatial flow past blunt bodies
assumes [2]: (1) continuous differentiability of the gas-dynamic quantities with respect to the small
parameter € in the neighbourhood of € = 0, (2) the equivalence of the axisymmetric and spatial
solutions in the sense that they must possess one and the same system of singularities (shock waves,
contact discontinuities, etc.), (3) the applicability of expansion (2.4) in the case of axisymmetric
bodies at angles of attack imposes the following constraint on the small parameter €

€lzfry +0r,foz| < 1

where z is the axial coordinate (as was pointed out by Livinskii) and, in the case of a body which
differs slightly from an axisymmetric one: e<€1.

Spatial calculations of the flow past a body with a specified geometry and specified free stream
parameters using the approach described above immediately enables one to find the entire single
parameter family of solutions with the parameter e which is either the angle of attack or a parameter
characterizing the extent to which the body differs from a solid of revolution.

3. THE METHOD OF GLOBAL ITERATIONS

After using the SPM, the spatial system of CVSL equations (1.1) was reduced to a set of
two-dimensional systems: to the axisymmetric system (2.7) and to a series of independent systems of
equations for determining the coefficients accompanying the first harmonics of the gas-dynamic
quantities (2.8).

It was shown in [9] that the axisymmetric system of CVSL equations (2.7) shows elliptic
properties in subsonic flow domains, in particular, close to the surface of the body and, as a
consequence of this, it is impossible to use any marching method with respect to the variable £ to
solve this problem directly. A previously described approach [10] was employed when solving the
axisymmetrical system of equations.

The set of systems of equations for determining the coefficients of the Fourier harmonics (2.8) is
identical as regards its basic properties with the system of CVSL equations in the axisymmetric case
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(2.7) and, by virtue of this, the matrices A,,, B, and D in the systems of equations (2.7) and (2.8).
which determine the type of the systems of equations, are completely identical.

On account of this, an approach was used to solve the systems of equations for the coefficients of
the Fourier harmonics which is based on the execution of global iteration. In order to do this, we
represent the derivative #P*/¢ in the momentum equation in the projection on the tangent to the
body in the form

0Pt/ = ar GPM/H™ + (1 — ar) (2PK)/a5)™) (3.1

The current mth global iteration is calculated for a specified field P{*) and a specified coefficient of
the Fourier harmonic of the angle of inclination of the shock wave ) which are obtained in the
calculation of the preceding global iteration. The Fourier coefficients of the pressure field and of the
inclination of the shock wave to the surface of the body for the next (sm + 1)th global iteration are
determined from the relaxation relationships

(p;k))(m’fl) =7, PEN™ (1 - Tp) (p;k))(m) (3.2)
@ENm D = 7 N+ (1 - 1) BN

Here (8}, and (P™)"" are the Fourier coefficients of the angle of inclination of the shock
wave and the pressure respectively, obtained as a result of the calculation of the mth global
iteration, and 7, and 7, are relaxation parameters.

A new method is proposed for calculating the inclination of the shock wave on a bluntness which
is unlike that previously adopted in [10]. In fact, the Fourier image of the angle of inclination of the
shock wave on the current global iteration was found not from the mass balance [10] but from the
Rankine-Hugoniot boundary condition for the Fourier image of the normal component of the
velocity vector v{®. In the case of corrections to the axisymmetric solution which are linear with
respect to the angle of attack, the integral law of conservation of mass is identically satisfied and
does not yield any additional information whatsoever. We note that such an approach to the
calculation of the inclination of the shock wave is fundamental in the spatial case since when solving
the spatial problems it is not clear how the mass balance relationship can be used to find the position
of the shock wave, while the approach which has been described above enables one to overcome this
difficulty.

The derivatives in (3.1) have to be approximated by difference expressions in such a manner that
the propagation of perturbations upstream in subsonic flow domains is taken account of in carrying
out the iterations. For this purpose, the approximation was employed which uses backward
differences in the first term and forward differences in the second term in expression (3.1).

A numerical method was employed when solving the mixed problem for the coefficients of the
Fourier harmonics. It is based on the use of a difference which is of the first order of approximation
with respect to the coordinate which is longitudinal to the body and of fourth order with respect to
the transverse coordinate.

A grid which is adaptive with respect to n was employed for calculating flows with large flux
gradients (at high Reynolds numbers). The step size was chosen at each point depending on the first
and second derivatives of the longitudinal component of the velocity vector u with respect to the
coordinate n [11]. This enabled calculations to be carried out over a wide range of Reynolds
numbers (10°<Re.. < 107), which encompasses flow conditions ranging from a completely viscous
shock layer to an inviscid shock layer with a thin boundary layer at the body.

4. RESULTS OF CALCULATIONS

The following calculations were carried out using the algorithm described above: (1) the flow past spherically
blunted cones at small angles of attack of 5-10°, (2) numerical simulation of the flow past a long spherically
blunted bicone at a small angle of attack, (3) the flow past an elliptic cone at a zero angle of attack.

Only the term corresponding to & = 1 [1, 3] is non-zero in expansion (2.5) in the case of a blunt cone at
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moderate angles of attack. By virtue of this, twe two-dimensional problems were solved to find the spatial flow.
A comparison of the calculations with experimental data [12] for the windward side (¢ = 0, curves 1) and
leeward side {p = 7, curves 2) of the cone is presented in Figs 1-3. The computational grid consisted of 35 X 31
grid points where the first number corresponds to the » coordinate. Data on the shock wave stand-off distance
for the following input parameters: Re. = 3.95x 10*, H,, = 0.701 is the temperature factor, M., = 5.9 is the
Mach number, T, = 53.7 K and 4, = 25° is the cone half-angle and e = 10° is the angle of attack, are presented
in Fig. 1. Data on the pressure distribution when Re., = 3.95X 104 My =58, T, =300 K, T, = 428 K is the
stagnation temperature, € = 8° and 6, = 40° are shown in Fig. 2. Data concerning the normalized heat transfer
coefficient; Cy; = 2uc™ ' Rez! 0h/dy |, when Re, = 1.3x 10°, H,, = 0.316, M., = 10.33, T, = 46.82 K, 6, = 45°
and e = 5° are presented in Fig. 3.

Curves of the drag C, (the dashed line), of the lift C, (the dotted and dashed line) and the pitching moment
M, (a dash and two dots) on the angle of attack e, obtained using the present method for spherically blunted
cone, when Re.. = 4.1 X 10°, M, = 13, H,, = 0.27, 0 =0.72, p = 0.75 is the power index in the viscosity law,
8, = 5° I = 6.98 is the length of the cone referred to the radius of bluntedness, are presented in Fig. 4. The
solid lines correspond to the calculation in [13] while the points are experimental data [14, 15]. As was
mentioned above, the proper application of the small-parameter method in this case imposes the following
constraint on the magnitude of the angle of attack: e <5°. However, as can be seen from the comparison, there
is good agreement with the experimental resuits up to angles of attack of about 10°. This is indicative of the fact
that the SPM is valid in the case of integral characteristics over a wider range than would be expected from
theoretical estimates.
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The following block marching technique for implementing the method was employed in order to simulate the
flow around a long (more than 50 times the bluntness radius), spherical blunted bicone at an angle of attack of
2°. The whole of the computational domain was subdivided into mutually intersecting blocks and the
calculations of each block were carried out using the method of global iterations. Mutual intersection of the
blocks was introduced in order to take account of the transmission of perturbations upstream in subsonic flow
domains. The dimensions of the subsonic domains may vary considerably on different segments of the body.
The use of a block marching method enables one to shorten the overall computation time significantly since, for
each block, there is a specific number of iterations which is necessary for convergence. The discontinuity in the
angle of the generatrix of the bicone was smoothed in the neighbourhood of the point where the cones joined.
This smoothing was insignificant and was propagated onto 4-5 grid points of the computational grid along the
direction of & In this calculation, the grid was not only adapted in the normal direction but also in directions
longitudinal to the body, which enabled us to carry out more accurate calculations in the neighbourhood of the
points where the cones joined. The computation grid consisted of 35 x 119 grid points.

A comparison with the results of an experiment [16] on the pressure distribution on the body both for the
windward side (curve 2) and leeward side (curve 1) of the bicone is shown in Fig. 5. The calculations were
carried out for Re., = 3.5x 10*, M, = 10.1, T,, = 49.3 K, H,, = 0.705, z. = 14.81 is the point where the cones
join, 6, = 9.33°, ., = 5° and € = 2°. The systematic difference of about 2-3% in the magnitude of the pressure
on the end of the bicone is explained by the fact that quadratic terms in € in expansion (2.4), which are not
taken into account in this approach, start to have an effect on the solution.
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In the case of the flow past a spherically blunted elliptic cone the quantity € = 1 —sin8,/sin 8, (6;<8,) was
chosen as the small parameter. The surface of the elliptic cone was specified in the following manner

02 2 -
rtx, @)= (e 2 (4.1)
'Ow(x) r"iw(x)

sinx, 0<x<Xx,,x,=n~0,

rOW(x) = { (42)

cos@, +8in 6, (x —x,), X>x,

sinx, 0<x<x,
riw®) = { . ) (4.3)
cosB, +siné, (X ~x,), X>X,

In order to ensure that there was a smooth transition from the spherical bluntness onto the surface of the
elliptic cone, the discontinuity in the angle of the generatrix in (4.3) was smoothed. On linearizing (4.1) with
respect to the small parameter € and then expanding the resulting perturbations in Fourier series, we obtain
that just two terms in the Fourier series (2.5), corresponding to k = 0, 2 will have non-zero values. The surface
of the elliptic cone is thereby replaced by a surface which has the following form

7o (X @) = rowlX) + e(x — x) sin 8, (=% ~ ¥ cos 2¢) + O(e?)

In this case, the spatial problem of finding the flow around an elliptic cone is reduced to solving an
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axisymmetric problem (the problem of finding the flow around a circular cone) and two two-dimensional
problems of determining the Fourier harmonics of gas-dynamic quantities. The calculations of the gas flow
were carried out for Re. = 10°, H, =0.1, T. =200 K, M., = 15 and 6, = 30°. The thermal flux —¢, =
no ' Rez'dH/ay |, and the coefficient of friction Cj, = 2uRe3' ow/dy |, are presented in Figs 6 and 7 in three
cross-sections with respect to x: x; = 1.388, x» = 1.976 and x; = 2.6571. All results for the elliptic cone are
presented for the case when e = (0.3,

It can be seen from the above comparisons that the proper use of the approach which has been described
above enables one to obtain results of high accuracy and over a wide range of free-stream parameters and aiso
makes it possible to find a one-parameter family of solutions where the parameter is either the angle of attack
or a parameter corresponding to the degree of difference between the body under consideration and a solid of
revolution. All of this shows the effectiveness of the method proposed.

In concluding, it should be pointed out that the computer time required for the most widely different values
of Re.. from 107 to 107 varied only slightly and was 20-30 minutes using an IBM PC AT 386.
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